LogoLogo
  • Bio
  • Fyzika
  • V médiích
  • Fotografie
  • Výstavy
  • Kontakt

    Rotating black hole solutions with quintessential energy

    Zdeněk Stuchlík · 01 prosince, 2015 · Fyzika · 0 comments
    0

    Publication date: Dec 2015

    Abstract:
    Quintessential dark energy with density $rho$ and pressure $p$ is governed by an equation of state of the form $p=-omega_{q}rho$ with the quintessential parameter $omega_qin(-1;-1/3)$. We derive the geometry of quintessential rotating black holes, generalizing thus the Kerr spacetimes. Then we study the quintessential rotating black hole spacetimes with the special value of $omega_q = -2/3$ when the resulting formulae are simple and easily tractable. We show that such special spacetimes can exist for dimensionless quintessential parameter $c<1/6$ and determine the critical rotational parameter $a_0$ separating the black hole and naked singularity spacetime in dependence on the quintessential parameter $c$. For the spacetimes with $omega_q = 2/3$ we present the integrated geodesic equations in separated form and study in details the circular geodetical orbits. We give radii and parameters of the photon circular orbits, marginally bound and marginally stable orbits. We stress that the outer boundary on the existence of circular geodesics, given by the so called static radius where the gravitational attraction of the black hole is balanced by the cosmic repulsion, does not depend on the dimensionless spin of the rotating black hole, similarly to the case of the Kerr-de Sitter spacetimes with vacuum dark energy. We also give restrictions on the dimensionless parameters $c$ and $a$ of the spacetimes allowing for existence of stable circular geodesics. Authors:
    Toshmatov, Bobir; Stuchlík, Zdeněk; Ahmedov, Bobomurat;

    https://ui.adsabs.harvard.edu/abs/2015arXiv151201498T

      Facebook   Pinterest   Twitter

    Leave a Comment! Zrušit odpověď na komentář

    You must be logged in to post a comment.
    Archivy
    Copyright © 2024 Zdeněk Stuchlík