The possibility that two toroidal accretion configurations may be orbiting around a~super--massive Kerr black hole has been addressed. Such tori may be formed during different stages of the Kerr attractor accretion history. We consider the relative rotation of the tori and the corotation or counterrotation of a~single torus with respect to the Kerr attractor. We give classification of the couples of accreting and non--accreting tori in dependence on the Kerr black hole dimensionless spin. We demonstrate that only in few cases a~double accretion tori system may be formed under specific conditions.
Read More
We study the dynamics of charged test particles in the vicinity of a black hole immersed into an asymptotically uniform external magnetic field. A real magnetic field around a black hole will be far away from to be completely regular and uniform, a uniform magnetic field is used as linear approximation. Ionized particle acceleration, charged particle oscillations and synchrotron radiation of moving charged particle have been studied.
Read More
We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (-1; -1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.
Read More
In this work we investigate the motion of free particle in the field of strongly gravitating object which is embedded into dust cosmological background. We use newly obtained exact solution of Einstein equations in comoving coordinates for the system under consideration in case of zero spatial curvature. Observable velocity of the particle moving relatively to the observer comoving with cosmological expansion is found from geodesic equations.
Read More
We introduce a general transformation leading to an integral form of pressure equations characterizing equilibrium configurations of charged perfect fluid circling in strong gravitational and combined electromagnetic fields. The transformation generalizes our recent analytical treatment applicable to electric or magnetic fields treated separately along with the gravitational one. As an example, we present a particular solution for a fluid circling close to a charged rotating black hole immersed in an asymptotically uniform magnetic field.
Read More
The possibility that two toroidal accretion configurations may be orbiting around a super-massive Kerr black hole has been addressed. Such tori may be formed during different stages of the Kerr attractor accretion history. We consider the relative rotation of the tori and the corotation or counterrotation of a single torus with respect to the Kerr attractor. We give classification of the couples of accreting and non-accreting tori in dependence on the Kerr black hole dimensionless spin. We demonstrate that only in few cases a double accretion tori system may be formed under specific conditions.
Read More
We demonstrate that the generic charged rotating regular black hole solutions of general relativity coupled to non-linear electrodynamics, obtained by using the alternate Newman-Janis algorithm, introduces only small (on level 10-2) inconsistency in the behaviour of the electrodynamics Lagrangian. This approves application of these analytic and simple solutions as astrophysically relevant, sufficiently precise approximate solutions describing rotating regular black holes.
Read More
In this work we present investigation of the escape cones of null-geodesics from the interior of rotating homogeneous compact stars in the model, where only terms linear in the star's rotational frequency are assumed. We focus on the single model of the star with particular radius R = 2.8M (using units in which c = G = 1) rotating with different values of angular momentum J. We vary the position of the isotropically radiating source both in radial and latitudinal direction and we show the impact of the position and the rotational rate on the shape of the escape cone of null-geodesics. We find that even for small rotational rate corresponding to j = J/M2 = 0.1 the impact on the escape cones is rather strong. The escape cones are no longer symmetrical around radial direction, and it is clearly seen that the radiation in the direction of the rotation can easily reach the infinity. On the other hand, the radiation in the direction opposite to the rotation will be trapped in the interior of the star. We discuss possible astrophysical relevance of our results.
Read More
The study of quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole binaries can provide a powerful tool for testing of the phenomena occurring in the strong gravity regime. Magnetized versions of the standard geodesic models of QPOs can explain the observationally fixed data from the three microquasars. We perform a successful fitting of the HF QPOs observed for three microquasars, GRS 1915+105, XTE 1550-564 and GRO 1655-40, containing black holes, for magnetized versions of both epicyclic resonance and relativistic precession models and discuss the corresponding constraints of parameters of the model, which are the mass and spin of the black hole and the parameter related to the external magnetic field. The estimated magnetic field intensity strongly depends on the type of objects giving the observed HF QPOs. It can be as small as 10^{-5} G if electron oscillatory motion is relevant, but it can be by many orders higher for protons or ions (0.02-1 G), or even higher for charged dust or such exotic objects as lighting balls, etc. On the other hand, if we know by any means the magnetic field intensity, our model implies strong limit on the character of the oscillating matter, namely its specific charge.
Read More
We study the general motion of photons in the Kerr-de Sitter black-hole and naked singularity spacetimes. The motion is governed by the impact parameters X, related to the axial symmetry of the spacetime, and q, related to its hidden symmetry. Appropriate `effective potentials' governing the latitudinal and radial motion are introduced and their behavior is examined by the `Chinese boxes' technique giving regions allowed for the motion in terms of the impact parameters. Restrictions on the impact parameters X and q are established in dependence on the spacetime parameters M, Λ , a. The motion can be of orbital type (crossing the equatorial plane, q>0) and vortical type (tied above or below the equatorial plane, q<0). It is shown that for negative values of q, the reality conditions imposed on the latitudinal motion yield stronger constraints on the parameter X than that following from the reality condition of the radial motion, excluding the existence of vortical motion of constant radius. The properties of the spherical photon orbits of the orbital type are determined and used along with the properties of the effective potentials as criteria of classification of the KdS spacetimes according to the properties of the motion of the photon.
Read More