Publication date: Oct 2014
Abstract:
We demonstrate possible optical signatures of the Kehagias-Sfetsos (KS) naked singularity spacetimes representing a spherically symmetric vacuum solution of the modified Hořava gravity. In such spacetimes, accretion structures significantly different from those present in standard black hole spacetimes occur due to the ‚antigravity‘ effect, which causes an internal static sphere surrounded by Keplerian discs. We focus our attention on the optical effects related to the Keplerian accretion discs, constructing the optical appearance of the Keplerian discs, the spectral continuum due to their thermal radiation, and the spectral profiled lines generated in the innermost parts of such discs. The KS naked singularity signature is strongly encoded in the characteristics of predicted optical effects, especially in cases where the spectral continuum and spectral lines are profiled by the strong gravity of the spacetimes due to the vanishing region of the angular velocity gradient influencing the effectiveness of the viscosity mechanism. We can conclude that optical signatures of KS naked singularities can be well distinguished from the signatures of standard black holes.
Authors:
Stuchlík, Zdeněk; Schee, Jan;