Radiation reaction acting on a charged particle moving at a stable circular orbit of a magnetized black hole (BH) can lead to the shift of the orbital radius outward from the BH. The effect causes an increase of the energy and angular momentum of the particle measured by an observer at rest at infinity. In this paper, we show that "widening" of such orbits is independent of the field configuration, but it appears only in the cases with the external Lorentz force acting outward from the BH. This condition corresponds to qLB > 0, where q and L are the charge and angular momentum of the particle, and B is intensity of the external magnetic field. As examples of the orbital widening, we consider two scenarios with an external homogeneous magnetic field and a magnetic dipole field generated by a current loop around a Schwarzschild BH. We show that the orbital widening is accompanied by quasi-harmonic oscillations of the particle, which are considerably large in the magnetic dipole fields. We also estimate the timescales of orbital widening, from which it follows that the effect can be relevant in the vicinity of stellar-mass BHs.
Read More
A test fluid composed of relativistic collisionless neutral particles in the background of Kerr metric is expected to generate non-isotropic equilibrium configurations in which the corresponding stress-energy tensor exhibits pressure and temperature anisotropies. This arises as a consequence of the constraints placed on single-particle dynamics by Killing tensor symmetries, leading to a peculiar non-Maxwellian functional form of the kinetic distribution function describing the continuum system. Based on this outcome, in this paper the generation of Kerr-like metric by collisionless N -body systems of neutral matter orbiting in the field of a rotating black hole is reported. The result is obtained in the framework of covariant kinetic theory by solving the Einstein equations in terms of an analytical perturbative treatment whereby the gravitational field is decomposed as a prescribed background metric tensor described by the Kerr solution plus a self-field correction. The latter one is generated by the uncharged fluid at equilibrium and satisfies the linearized Einstein equations having the non-isotropic stress-energy tensor as source term. It is shown that the resulting self-metric is again of Kerr type, providing a mechanism of magnification of the background metric tensor and its qualitative features.
Read More
Ringed accretion disks (RADs) are agglomerations of perfect-fluid tori orbiting around a single central attractor that could arise during complex matter inflows in active galactic nuclei. We focus our analysis to axi-symmetric accretion tori orbiting in the equatorial plane of a supermassive Kerr black hole; equilibrium configurations, possible instabilities, and evolutionary sequences of RADs were discussed in our previous works. In the present work we discuss special instabilities related to open equipotential surfaces governing the material funnels emerging at various regions of the RADs, being located between two or more individual toroidal configurations of the agglomerate. These open structures could be associated to proto-jets. Boundary limiting surfaces are highlighted, connecting the emergency of the jet-like instabilities with the black hole dimensionless spin. These instabilities are observationally significant for active galactic nuclei, being related to outflows of matter in jets emerging from more than one torus of RADs orbiting around supermassive black holes.
Read More
The electromagnetic (EM) perturbations of the black hole solutions in general relativity coupled to nonlinear electrodynamics (NED) are studied for both electrically and magnetically charged black holes, assuming that the EM perturbations do not alter the spacetime geometry. It is shown that the effective potentials of the electrically and magnetically charged black holes related to test perturbative NED EM fields are related to the effective metric governing the photon motion, contrary to the effective potential of the linear electrodynamic (Maxwell) field that is related to the spacetime metric. Consequently, corresponding quasinormal (QN) frequencies differ as well. As a special case, we study new family of the NED black hole solutions which tend in the weak field limit to the Maxwell field, giving the Reissner-Nordström (RN) black hole solution. We compare the NED Maxwellian black hole QN spectra with the RN black hole QN spectra.
Read More
We determine the class of axisymmetric and asymptotically flat black-hole spacetimes for which the test Klein-Gordon and Hamilton-Jacobi equations allow for the separation of variables. The known Kerr, Kerr-Newman, Kerr-Sen and some other black-hole metrics in various theories of gravity are within the class of spacetimes described here. It is shown that although the black-hole metric in the Einstein-dilaton-Gauss-Bonnet theory does not allow for the separation of variables (at least in the considered coordinates), for a number of applications it can be effectively approximated by a metric within the above class. This gives us some hope that the class of spacetimes described here may be not only generic for the known solutions allowing for the separation of variables, but also a good approximation for a broader class of metrics, which does not admit such separation. Finally, the generic form of the axisymmetric metric is expanded in the radial direction in terms of the continued fractions and the connection with other black-hole parametrizations is discussed.
Read More
Super-massive black holes (SMBHs) hosted in active galactic nuclei (AGNs) can be characterized by multi-accreting periods as the attractors interact with the environment during their life-time. These multi-accretion episodes should leave traces in the matter orbiting the attractor. Counterrotating and even misaligned structures orbiting around the SMBHs would be consequences of these episodes. Our task in this work is to consider situations where such accretions occur and to trace their remnants represented by several toroidal accreting fluids, corotating or counterrotating relative to the central Kerr attractor, and created in various regimes during the evolution of matter configurations around SMBHs. We focus particularly on the emergence of matter instabilities, i.e., tori collisions, accretion onto the central Kerr black hole, or creation of jet-like structures (proto-jets). Each orbiting configuration is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluid. We prove that sequences of configurations and hot points, where an instability occurs, characterize the Kerr SMBHs, depending mainly on their spin-mass ratios. The occurrence of tori accretion or collision are strongly constrained by the fluid rotation with respect to the central black hole and the relative rotation with respect to each other. Our investigation provides characteristic of attractors where traces of multi-accreting episodes can be found and observed.
Read More
We study the motion of current carrying charged string loops in the Reissner-Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string loop makes the string loop equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string loop trajectories using effective potential approach, and we compare the innermost stable string loop positions with loci of the charged particle innermost stable orbits. We examine string loop small oscillations around minima of the string loop effective potential, and we plot radial profiles of the string loop oscillation frequencies for both the radial and vertical modes. We construct charged string loop quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string loops along the vertical axis and the string loop ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.
Read More
We construct the light escape cones of isotropic spot sources of radiation residing in special classes of reference frames in the Kerr-de Sitter (KdS) black hole spacetimes, namely in the fundamental class of `non-geodesic' locally non-rotating reference frames (LNRFs), and two classes of `geodesic' frames, the radial geodesic frames (RGFs), both falling and escaping, and the frames related to the circular geodesic orbits (CGFs). We compare the cones constructed in a given position for the LNRFs, RGFs, and CGFs. We have shown that the photons locally counter-rotating relative to LNRFs with positive impact parameter and negative covariant energy are confined to the ergosphere region. Finally, we demonstrate that the light escaping cones govern the shadows of black holes located in front of a radiating screen, as seen by the observers in the considered frames. For shadows related to distant static observers the LNRFs are relevant.
Read More
We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (-1; -1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.
Read More
We study the dynamics of charged test particles in the vicinity of a black hole immersed into an asymptotically uniform external magnetic field. A real magnetic field around a black hole will be far away from to be completely regular and uniform, a uniform magnetic field is used as linear approximation. Ionized particle acceleration, charged particle oscillations and synchrotron radiation of moving charged particle have been studied.
Read More