LogoLogo
  • Bio
  • Fyzika
  • V médiích
  • Fotografie
  • Výstavy
  • Kontakt

    Rotating black hole solutions with quintessential energy

    Zdeněk Stuchlík · Únor 01, 2017 · Fyzika · 0 comments
    0

    Publication date: Feb 2017

    Abstract:
    Quintessential dark energy with density ρ and pressure p is governed by
    an equation of state of the form p=ωqρ with the
    quintessential parameter ω_qin (-1;-1/3). We derive the geometry of
    quintessential rotating black holes, generalizing thus the Kerr
    spacetimes. Then we study the quintessential rotating black hole
    spacetimes with the special value of ωq = -2/3 when the
    resulting formulae are simple and easily tractable. We show that such
    special spacetimes can exist for the dimensionless quintessential
    parameter c < 1/6 and determine the critical rotational parameter
    a0 separating the black hole and naked singularity spacetime
    in dependence on the quintessential parameter c . For the spacetimes
    with ωq = -2/3 we give all the black hole characteristics and
    demonstrate local thermodynamical stability. We present the integrated
    geodesic equations in separated form and study in details the circular
    geodetical orbits. We give radii and parameters of the photon circular
    orbits, marginally bound and marginally stable orbits. We stress that
    the outer boundary on the existence of circular geodesics, given by the
    so-called static radius where the gravitational attraction of the black
    hole is balanced by the cosmic repulsion, does not depend on the
    dimensionless spin of the rotating black hole, similarly to the case of
    the Kerr-de Sitter spacetimes with vacuum dark energy. We also give
    restrictions on the dimensionless parameters c and a of the spacetimes
    allowing for existence of stable circular geodesics. Finally, using
    numerical methods we generalize the discussion of the circular geodesics
    to the black holes with arbitrary quintessential parameter
    ωq.

    Authors:
    Toshmatov, Bobir; Stuchlík, Zdeněk; Ahmedov, Bobomurat;

    https://ui.adsabs.harvard.edu/abs/2017EPJP..132…98T

      Facebook   Pinterest   Twitter   Google+

    Leave a Comment! Zrušit odpověď na komentář

    You must be logged in to post a comment.
    Archivy
    Copyright © 2016 Zdeněk Stuchlík